
A Brief Introduction to TRIO

Abstract

This document introduces the main characteristics of the TRIO specification
language. First, the basic logic features of the language are described; then, its
object-oriented extensions are presented.

1 TRIO in-the-small
TRIO [2] is a first order temporal logic language that supports a linear notion of time.
Besides the usual propositional operators and quantifiers, one may compose formulas
by using a single basic modal operator, called Dist, that relates the current time, which
is left implicit in the formula, to another time instant: the formula Dist(F, t), where
F is a formula and t a term indicating a time distance, specifies that F holds at a time
instant at t time units from the current instant.

A number of derived temporal operators can be defined from the basic Dist oper-
ator through propositional composition and first order quantification on variables rep-
resenting a time distance. Table 1 reports the formal definition of some TRIO derived
operators 1. Most of the operators are symmetrically defined with reference to the past
and the future of the current instant.

TRIO is well suited to deal with both continuous and discrete time. What changes
in the two cases is the domain over which time variables range (real or integer num-
bers)2. In the following the time domain is assumed to be continuous.

The natural tendency to describe systems in an operational way is supported by
TRIO through the so-called ontological constructs, such as events and states. An event
is a particular predicate that models instantaneous conditions such as a change of state
or the occurrence of an external stimulus. A state is a predicate representing a property
of a system. A state may have duration over a time interval.

The semantics of such constructs is defined by means of (built-in) TRIO axioms.
In fact, a distinguishing feature of TRIO is that every high level concept is defined in
terms of lower level ones down to the Dist operator.

For example, an event E must satisfy the following (non-Zeno) behavior [1]:

UpToNow(¬E) ∧ NowOn(¬E).

1Notice that there exist versions of the temporal operators with explicitly included/excluded bounds -
indicated with subscripts i/e, respectively. For instance, the definition of Lastsie(F, t) is ∀d (0 ≤ d <

t → Dist(F, d)).
2The definitions of some operators also change, for example UpToNow and NowOn

1



Operator TRIO Definition
Past(A, d) d > 0 ∧ Dist(A,−d)
Futr(A, d) d > 0 ∧ Dist(A, d)
Som(F ) ∃d Dist(F, d)
Alw(F ) ¬Som(¬F )

SomF (F ) ∃d (d > 0 ∧ Dist(F, d))
SomP (F ) ∃d (d > 0 ∧ Dist(F,−d))
AlwF (F ) ¬SomF (¬F )
AlwP (F ) ¬SomP (¬F )
Lasts(F, t) ∀d (0 < d < t → Dist(F, d))
Lasted(F, t) ∀d (0 < d < t → Dist(F,−d))

WithinF (F, t) ¬Lasts(¬F, t)
WithinP (F, t) ¬Lasted(¬F, t)
Until(F, G) ∃d (d > 0 ∧ Lasts(F, d) ∧ Dist(G, d))
Since(F, G) ∃d (d > 0 ∧ Lasted(F, d) ∧ Dist(G,−d))

UpToNow(F ) ∃d (d > 0 ∧ Lasted(F, d)); Dist(F,−1) if T is not dense
NowOn(F ) ∃d (d > 0 ∧ Lasts(F, d)); Dist(F, 1) if T is not dense

LastT ime(A, d) d ≥ 0 ∧ Dist(A,−d) ∧ Lasted(¬A, d)
NextT ime(A, d) d ≥ 0 ∧ Dist(A, d) ∧ Lasts(¬A, d)

Becomes(F ) F ∧ UpToNow(¬F )

Table 1: Derived Temporal Operators

A state S, on the other hand, obeys the following axiom:

(UpToNow(S) ∧ NowOn(S) ∧ S)
∨ (UpToNow(¬S) ∧ NowOn(¬S) ∧ ¬S)
∨ (UpToNow(¬S) ∧ NowOn(S))
∨ (UpToNow(S) ∧ NowOn(¬S)).

TRIO items (values, predicates, functions, events, states, etc.) are divided into time-
independent (TI), whose value does not change during system evolution, and time-
dependent (TD), whose value may change during system evolution.

2 Modular TRIO
For specifying large and complex systems, TRIO has the usual object-oriented concepts
and constructs such as classes, inheritance and genericity. Classes denote collections
of objects (class instances) that satisfy a set of axioms. Notice that TRIO, being a
logic language, does not support object creation/destruction. Therefore, if one wants
to model an entity having a limited lifetime he/she must simulate creation/destruction
using other TRIO mechanisms, such as a time-dependent predicate that is true when
the object exists, and false otherwise. In addition, TRIO objects do not have a priori
a unique identifier to distinguish one object from the others. However, object identity

2



CD_Player_Class

classes

events

other items

states

Push_Stop

Push_Pause

Push_Play

Left_Channel

Right_Channel

Switch_on/off

Toggle_open/close

Put_CD_On_Deck

Take_CD_Off_Deck

CD_On_Deck

Deck_state

Figure 1: A TRIO simple class

can be modeled by introducing an item that represents the identity of the object and
some axioms assuring that different objects have different identities.

Classes can be either simple or structured - the latter term denoting classes obtained
by composing simpler ones. A simple class is defined through a set of axioms premised
by a declaration of all items that are referred therein. Some of such items are visible,
that is, they may be referenced from outside, in the context of a complex class whose
instances include an instance of that class.

Suppose, for example, that we want to specify the behavior of basic CD players that
allow only three operations: play, stop and pause, plus the obvious possibility to switch
the player on/off and to open/close the CD deck. The graphical description of the class
representing the CD players is given in Figure 1. The class includes seven events
(recognizable by the dots on the lines, for example Push Play, Put CD On Deck,
and Switch on/off), two states (Deck state and CD On Deck, represented by a bold
line) and two generic predicates (Left channel and Right channel, drawn as simple
lines).

All of the items of CD Player Class are in its interface, that is, they may be ref-
erenced from outside it in the context of a complex class that includes an instance of
CD Player Class.

A class is completely defined through a set of axioms premised by a declaration
of all items that are referred therein. These axioms describe the dynamic behavior of
that class, while the graphical representation gives only a static idea of what items are
included in the class. A possible definition for class CD Player Class might be, for
example:

Class CD_Player_Class

signature:
visible: Left_channel, Right_channel,

Push_Play, Push_Stop, Push_Pause,

3



Put_CD_On_Deck, Take_CD_Off_Deck,
Toggle_open/close, Switch_on/off,
Deck_state, CD_On_Deck;

temporal domain: real;
domains:
DeckState : {open, close, opening, closing};

items:
TD total Left_Channel : real;
TD total Right_Channel : real;

state Deck_state (DeckState);
state CD_On_Deck;

event Push_Play;
event Push_Stop;
event Push_Pause;
event Put_CD_On_Deck;
event Take_CD_Off_Deck;
event Toggle_open/close;
event Switch_on/off;

axioms:
/* axioms that define the behavior of the class */

end

Notice that state Deck state has an argument of type enumerative, which repre-
sents not only when the deck is stopped in an open/close position, but also when it
is moving; on the other hand, state CD On Deck has no arguments, it is simply true
when a CD is on the deck, false otherwise. In addition, none of the events has an ar-
gument (which is no surprise since they simply represent a button pushed). Values (i.e.
functions with arity zero in TRIO terms) Left channel and Right channel represent
the sound wave that is transmitted by the CD player.

One possible axiom might state that it is possible to put/take away a CD on/from
the deck only when this is open:

Put CD On Deck ∨ Take CD From Deck → Deck state(open)

Similarly, we must define the behavior of state CD On Deck; this can be done
using the following two axioms (we assume that at the beginning the CD player is
empty):

CD On Deck ↔ ¬Take CD From Deck∧

SomPi(Put CD On Deck)∧
Sinceei(¬Take CD From Deck, Put CD On Deck)

4



Overall_System

Switch_on/off Switch_Ampli_on/off

CD_On_Deck

Deck_state

signal

Left_Speaker

User

Switch_on/off

Push_Play

Toggle_open/close

Take_CD_Off_Deck

Put_CD_On_Deck

Push_Pause

Push_Stop

Switch_CD_on/off

Volume

Balance

CD_Player_Class

Amplifier

Left_Channel

Right_Channel

Left_Channel_CD

Right_Channel_CD

Right_Speaker

signal

Right_Speaker_Signal

Left_Speaker_Signal

Figure 2: A TRIO structured class

Figure 2 depicts a situation in which a user operates a hi-fi composed of a CD
player, an amplifier and two speakers. The signature definition of the corresponding
class Overall System is the following:

Class Overall_System
import: CD_Player_Class, Amplifier_Class,

Speaker_Class, Hi-Fi_User_Class;

signature:
temporal domain: real;
modules:
CD_Player : CD_Player_Class;
Amplifier : Amplifier_Class;
Left_Speaker : Speaker_Class;
Right_Speaker : Speaker_Class;
User : Hi-Fi_User_Class

connections:
(direct CD_Player.Push_Play, User.Push_Play)
(direct CD_Player.Switch_on/off, User.Switch_CD_on/off)
(direct Amplifier.Switch_on/off, User.Switch_Ampli_CD_on/off)
(direct Amplifier.Volume, User.Volume)
(direct Amplifier.Right_Speaker_signal, Right_Speaker.signal)
(direct Amplifier.Right_channel_CD, CD_Player.Right_channel)
/* rest of connections not shown */

axioms:

5



/* axioms that define the behavior of the class. */
end

Structured class Overall System contains one instance each of classes CD Player Class,
Amplifier Class and Hi-Fi User Class and two instances of class Speaker Class. A
connection joining two items states that they are the same thing. For example, event
Switch on/off of module CD Player is the same as Switch CD on/off of module
User, they are only called differently by the two modules. On the other hand, items
Volume in Amplifier and Volume in User are not only the same, they are also called
in the same way in the two modules (hence the unique naming of the corresponding
line in Figure 2).

The specification of any non-trivial system is usually made up of one structured
class; this models the overall system along with its environment, and its instances in-
clude instances of other classes representing the different components of the system.
The global semantics of a structured class is defined by the logical conjunction of all
axioms of the class and of its modules.

References
[1] A. Gargantini and A. Morzenti. Automated deductive requirements analysis of crit-

ical systems. ACM TOSEM - Transactions On Software Engineering and Method-
ologies, 3(3):225–307, 2001.

[2] Carlo Ghezzi, Dino Mandrioli, and Angelo Morzenti. TRIO: A logic language
for executable specifications of real-time systems. The Journal of Systems and
Software, 12(2):107–123, May 1990.

6


	TRIO in-the-small
	Modular TRIO

