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elegant language, but it is not executable; it has a structuring mechanism,

but has no real modularity constructs and lacks an explicit representation of

time. Z is oriented toward formal proof of correctness of specification refine-

ment and implementation, rather than toward testing and simulation activi-

ties. Case studies on real-time constraints have been successfully developed

[Mahony and Hayes 19921, however, and an object-oriented version of the

language has been proposed [Barrington et al. 1990; Duke et al. 1991], called

Object-Z. Object-Z provides generic classes and monotonic inheritance (i.e.,

without redefinition of features); abstract interfaces can be defined by means

of visibility lists, but classes do not have an expressive graphic representa-

tion.

TRIO + may also be compared, on a broad basis, with well-known and

widespread software development methodologies like OMT [Rumbaugh et al.

1991] and SA/SD [Ward 1986]. It should be noted that OMT and SA/SD are

methodologies intended to cover all phases of the software life cycle, from

modeling to maintenance, whereas TRIO+ is a language that is particularly

suited to support modeling, requirements specification, system validation,

and verification. Since TRIO + includes many object-oriented features, it fits

well into an object-oriented methodology like OMT, of which it shares the

principle of organizing the system around real-world objects or conceptual

objects that exist in the user’s view. In SA/SD the modeling and design

activities are instead centered around functions. Furthermore, dynamic and

time-critical components of the system are specified by an automaton-based

notation, which makes the language rather operational in style, whereas

TRIO + is much more descriptive in nature.

6. CONCLUSIONS

We have presented TRIO+, an object-oriented logical language for modular

specification of time-critical systems, which allows the specifier to structure

the description of the system in distinct, separate, and reusable modules.

TRIO + was used successfully in the specification of hardware and software

systems of significant architectural complexity, like pondage power stations

of ENEL, the Italian electric energy board. Systems of this kind are highly

structured and exhibit quite a complex behavior: They are governed by

management programs whose validity lasts several days or weeks, respond

with flexible and adaptable actions to a large variety of events coming from

the surrounding environment, and include components with intrinsic time
constants ranging from several hours (for a water reservoir) to microseconds

(for the electronic circuitry that controls the power distribution).
The experience gained in this activity confirmed that for a specification

language the possibility of structuring specifications is as crucial as for a

design language. In particular, for a logical language, when the number and

length of formulas increase beyond a certain threshold (which for humans is

unfortunately quite low’) a significant or even prevalent part of the specifier

time and effort is spent just in purely syntactical activities, like checking the

name and type of entities, or the consistency between use and definition of an

object.
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In such a framework, it has been noted that a graphic notation, with its

ability to convey a great deal of information in a compact, structured, and

intuitively appealing form, can be of great help. Also, the availability of

language-dependent tools, such as syntax-directed editors, graphic editors,

and automatic consistency checkers, provides a support to precisely those

parts of the specification activity that are not conceptually relevant or

difficult, but become painfully intricate and time consuming when specifica-

tions increase in size. The use of such automatic tools allows the specifier to

concentrate his/her efforts on the conceptually relevant and challenging

aspects of the modeled system. We also point out that, unlike most informal

specification languages and methods, which provide a graphic notation with-

out an associated formal and rigorous semantics, TRIO+ combines, in a

suitable linguistic frame, the possibility to structure the specification into

modules and the description of semantic aspects, especially those regarding

the temporal behavior.

An implementation of a tool supporting the production of TRIO+ specifica-

tions has been realized on a DEC station on top of UNIX@ and VMS

platforms, and is public domain. It consists of an editor providing the
following features:

—A structured syntax-directed editor for the textual part of the specific ~-

tions. The editor performs the necessary syntax checks, and applies t,le

typing and visibility rules of the language.

—A graphical editor for the pictorial part of TRIO’ specifications; which

allows the user to define a class with its modules, its visible and internal

items, and the connections among items by manipulating their pictorial

representation. Suitable graphical conventions are adopted for the visual-

ization of generic classes and arrays of modules. A specification produced

in its graphical form by means of this component of the editor can be

automatically translated into the equivalent textual class declarations.

—Simple commands to perform information retrieval and browsing on a

database consisting of a set of related TRIO+ specifications.

Future work will be devoted to the construction of semantic tools, that is,

tools supporting validation activities similar to those that are already possi-

ble on TRIO, which have been outlined in Section 2.1.

New methods for performing test-case generation directly on TRIO+ speci-

fications are now under study. Their main purpose is to permit testing-in-

the-large, which should comprise partial testing, composition of test cases,

and test-case classification and reuse.

A more direct approach to obtain executability of TRIO+ specifications

consists of translating TRIO+ class declarations into equivalent (sets of)

TRIO axioms: The outline of a translation procedure is reported by Morzenti

and San Pietro [1991]. A new component of the specification environment,
which automatically performs the translation, has been developed. This

@uNIX is a registered ~rademark of AT & T Bell Laboratories.
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approach has the advantage of permitting one to apply to TRIO+ all of the

facilities for executing TRIO specifications, at the very low cost of executing

the translation.

A new research direction is the investigation of how notions related to time

granularity can be embedded into TRIO+ to facilitate its application to the

specification and analysis of systems whose components have intrinsic time

constants ranging over several orders of magnitude. For instance, a manufac-

turing control system would include mechanical devices whose evolution

takes place in several seconds, and control microprocessors that change their

state within a few microseconds. In a previous paper [Corsetti et al. 1991bl,

we defined an extension of the basic TRIO language that considers a tempo-

ral universe composed of various temporal domains of different time granu-

larity. The semantics of the extended language was defined by translation

mechanisms that permit one to interpret formulas that refer to a coarser time

granularity in a finer temporal domain. We now intend to introduce these

notions of time granularity into TRIO+ by combining them with its modular-

ization constructs.
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