
94 . A. Morzenti and P. San Pietro

elegant language, but it is not executable; it has a structuring mechanism,

but has no real modularity constructs and lacks an explicit representation of

time. Z is oriented toward formal proof of correctness of specification refine-

ment and implementation, rather than toward testing and simulation activi-

ties. Case studies on real-time constraints have been successfully developed

[Mahony and Hayes 19921, however, and an object-oriented version of the

language has been proposed [Barrington et al. 1990; Duke et al. 1991], called

Object-Z. Object-Z provides generic classes and monotonic inheritance (i.e.,

without redefinition of features); abstract interfaces can be defined by means

of visibility lists, but classes do not have an expressive graphic representa-

tion.

TRIO + may also be compared, on a broad basis, with well-known and

widespread software development methodologies like OMT [Rumbaugh et al.

1991] and SA/SD [Ward 1986]. It should be noted that OMT and SA/SD are

methodologies intended to cover all phases of the software life cycle, from

modeling to maintenance, whereas TRIO+ is a language that is particularly

suited to support modeling, requirements specification, system validation,

and verification. Since TRIO + includes many object-oriented features, it fits

well into an object-oriented methodology like OMT, of which it shares the

principle of organizing the system around real-world objects or conceptual

objects that exist in the user’s view. In SA/SD the modeling and design

activities are instead centered around functions. Furthermore, dynamic and

time-critical components of the system are specified by an automaton-based

notation, which makes the language rather operational in style, whereas

TRIO + is much more descriptive in nature.

6. CONCLUSIONS

We have presented TRIO+, an object-oriented logical language for modular

specification of time-critical systems, which allows the specifier to structure

the description of the system in distinct, separate, and reusable modules.

TRIO + was used successfully in the specification of hardware and software

systems of significant architectural complexity, like pondage power stations

of ENEL, the Italian electric energy board. Systems of this kind are highly

structured and exhibit quite a complex behavior: They are governed by

management programs whose validity lasts several days or weeks, respond

with flexible and adaptable actions to a large variety of events coming from

the surrounding environment, and include components with intrinsic time
constants ranging from several hours (for a water reservoir) to microseconds

(for the electronic circuitry that controls the power distribution).
The experience gained in this activity confirmed that for a specification

language the possibility of structuring specifications is as crucial as for a

design language. In particular, for a logical language, when the number and

length of formulas increase beyond a certain threshold (which for humans is

unfortunately quite low’) a significant or even prevalent part of the specifier

time and effort is spent just in purely syntactical activities, like checking the

name and type of entities, or the consistency between use and definition of an

object.

ACM Transactions on Software Engmeermg and Methodology, Vol 3, No 1, January 1994

Specification of Time-Critical Systems . 95

In such a framework, it has been noted that a graphic notation, with its

ability to convey a great deal of information in a compact, structured, and

intuitively appealing form, can be of great help. Also, the availability of

language-dependent tools, such as syntax-directed editors, graphic editors,

and automatic consistency checkers, provides a support to precisely those

parts of the specification activity that are not conceptually relevant or

difficult, but become painfully intricate and time consuming when specifica-

tions increase in size. The use of such automatic tools allows the specifier to

concentrate his/her efforts on the conceptually relevant and challenging

aspects of the modeled system. We also point out that, unlike most informal

specification languages and methods, which provide a graphic notation with-

out an associated formal and rigorous semantics, TRIO+ combines, in a

suitable linguistic frame, the possibility to structure the specification into

modules and the description of semantic aspects, especially those regarding

the temporal behavior.

An implementation of a tool supporting the production of TRIO+ specifica-

tions has been realized on a DEC station on top of UNIX@ and VMS

platforms, and is public domain. It consists of an editor providing the
following features:

—A structured syntax-directed editor for the textual part of the specific ~-

tions. The editor performs the necessary syntax checks, and applies t,le

typing and visibility rules of the language.

—A graphical editor for the pictorial part of TRIO’ specifications; which

allows the user to define a class with its modules, its visible and internal

items, and the connections among items by manipulating their pictorial

representation. Suitable graphical conventions are adopted for the visual-

ization of generic classes and arrays of modules. A specification produced

in its graphical form by means of this component of the editor can be

automatically translated into the equivalent textual class declarations.

—Simple commands to perform information retrieval and browsing on a

database consisting of a set of related TRIO+ specifications.

Future work will be devoted to the construction of semantic tools, that is,

tools supporting validation activities similar to those that are already possi-

ble on TRIO, which have been outlined in Section 2.1.

New methods for performing test-case generation directly on TRIO+ speci-

fications are now under study. Their main purpose is to permit testing-in-

the-large, which should comprise partial testing, composition of test cases,

and test-case classification and reuse.

A more direct approach to obtain executability of TRIO+ specifications

consists of translating TRIO+ class declarations into equivalent (sets of)

TRIO axioms: The outline of a translation procedure is reported by Morzenti

and San Pietro [1991]. A new component of the specification environment,
which automatically performs the translation, has been developed. This

@uNIX is a registered ~rademark of AT & T Bell Laboratories.

ACM TransactIons on Software Engmeermg and Methodology, Vol. 3, No. 1. January 1994

96 . A. Morzenti and P. San Pietro

approach has the advantage of permitting one to apply to TRIO+ all of the

facilities for executing TRIO specifications, at the very low cost of executing

the translation.

A new research direction is the investigation of how notions related to time

granularity can be embedded into TRIO+ to facilitate its application to the

specification and analysis of systems whose components have intrinsic time

constants ranging over several orders of magnitude. For instance, a manufac-

turing control system would include mechanical devices whose evolution

takes place in several seconds, and control microprocessors that change their

state within a few microseconds. In a previous paper [Corsetti et al. 1991bl,

we defined an extension of the basic TRIO language that considers a tempo-

ral universe composed of various temporal domains of different time granu-

larity. The semantics of the extended language was defined by translation

mechanisms that permit one to interpret formulas that refer to a coarser time

granularity in a finer temporal domain. We now intend to introduce these

notions of time granularity into TRIO+ by combining them with its modular-

ization constructs.

ACKNOWLEDGMENTS

The authors wish to thank Dino Mandrioli for discussing various features of

TRIO + and for providing useful suggestions on the structure of the paper.

REFERENCES

ABITEBOUL, S., AND HULL, R. 1987. IFO: A formal semantic database model ACM Tram

Database Syst. 12, 4 (Dec.), 525-565.
ALUR, R., AND HENZINGER, T, A. 1990. RealTlme logycs: Complex@ and expressiveness. In

Proceedings of 5th Symposzum on LogLcs m Computer Sczence (Phdadelphla, Pa., June 1990).

IEEE, New York, 390-401.

ARAPIS, C. 1992. Dynamic evolutlon of object behavior and object cooperation, Ph.D. disserta-

tion, Umversity of Geneva, Switzerland.

BEERI, C. 1990. A formal approach to object oriented databases. Data Knowl. Eng. 5, 4 (Oct.),

353-382.

BERNSTEIN, A., AND HARTER, P, K. 1981. Proving real time properties of programs with

temporal logic. In Proceedings of the 8th ACM Symposium on Operating Systems (Pacific

Grove, Calif., Dec. 1981). ACM, New York, 111-119

BOLOGNESI, T., AND LUCIDI, F. 1992. Timed process algebras with urgent interactions and a

unique powerful binary operator. In Proceedings of REX Workshop: Real-Time: Theory m

Practice (Mook, tbe Netherlands, June 1991). Springer-Verlag, New York, 124-148.

CARRINGTON, D., ET AL. 1990. Object Z: An obJect oriented extension to Z. In Proceedings of

Formal &!SC7_LptLOTL Techniques II (FORTE ‘89), S. Vuong, Ed. North-Holland, Amsterdam,

281-296.

CASE STUDY. 1990. Specification environments for real time systems based on a logic lan-

guage. Tech. Annex to Res. Contract 27/90, Dec. (Case studies on a regulator in a pondage

power plant and on high-voltage substation. In Italian.)

CASE STUDY. 1992. Specification environments for real time systems based on a logic lan-

guage, Tech. Annex to Res. Contract 49/92, Dec. (Case studies on a programmable d@al

energy and power meters and on data collection and elaboration for dam security. In Italian.)

CHEN, W., ANII WARREN, D. S 1988. Objects as intensions. In Proceedings of 5th International

Conference and Symposmm on Log~c Programmmg (Seattle, Wash. Aug. 1988). MIT Press,

Cambridge, Mass., 404-419.

ACM Transactions on Software Engmeermg and Methodology, Vol. 3, No. 1, January 1994

Specification of Time-Critical Systems . 97

COEN PORISINI, A., MORZENTI, A., ANI) SCIUTO, D. 1992. Specification and verification of hard-

ware systems using the temporal logic language TRIO. In CHDL ’91: 10t/L ZnternatLonal

Symposium on Hardware Descrtptzon Languages and Theu- Applications. (Marseille, France,

Apr. 1991). North Holland, Amsterdam, 1992, 43-62.

COHEN, B., HARWOOD, W. T., AND JACKSON, M. J. 1986. The Spectflcatton of Complex Systems.

Addison-Wesley, Reading, Mass.

CONERY, J. S. 1988. Logical objects. In Proceedings of 5th Znternatlonal Conference and

Sympostum on Logtc Programmmg (Seattlej Wash., Aug. 1988). MIT Press, Cambridge, Mass.,

1988, 420-434.

CORSIZTTI, E., MONTANARI, A., AND RATTO, E. 1991a. Dealing with different time granularities

in formal specifications of real time systems. J. Real-TZme Syst. 3, (May), 19 1–2 15,

CORSETTI, E., CRIVELLI, E., MANDRIOLI, D., MONTANARI, A., MORZENTI, A,. SAN PIETRO, P., AND

RATTO, E. 1991b. Dealing with different time scales in formal specifications. In Proceedings of

6th International Workshop on Software Specification and Design (Como, Italy, oct. 1991).

IEEE, New York, 92-101.

CUSACK, E., RUDKIN, S., AND SMITH, C. 1990. An object oriented interpretation of LOTOS. In

Proceedings of Formal Description Techniques II (FORTE ‘89), S. Vuong, Ed. North Holland,

Amsterdam, 281-296.

DEMARCO, T. 1978. Structured Analysis and System Destgn. Yourdon Press, New York.

DEREMER, F., AND KRON, H. 1976. Programming-in-the-large versus Programming-in-the-

small. IEEE Trans. Sof2w. Eng. 2, 6 (June), 80–86.

DUKE, R., KING, P., GORDON, R., AND SMITH, G. 1991. The Object-Z specification language.

Version 1. Tech. Rep. 91-1, Software Verification Research Center, Dept. of Computer Science,

Univ. of Queensland, Australia, May.

ENDERTON, H. B. 1972. A Mathematical Introduction to Logtc. Academic Press, New York.

FELDER, M., AND MORZENTI, A. 1992. Validating real-time systems by executing logic specifica-

tions in TRIO. In Proceedings of 14th International Conference on Software Engmeertng

(Melbourne, May 1992). IEEE, New York, 1992, 199-211,

FELDER, M., MANDRIOLI, D., AND MORZENTI, A. 1994. Proving properties of real-time systems

through logical specifications and Petri nets models. IEEE Trans. Softw. Eng. 20, 2 (Feb.).

FUTATSUGI, K., GOGUEN, J., JOUANNAUD, J. P., AND MESEGUER, J. 1985. Principles of OBJ. In

Proceedings of SymposLum on Principles of Programmmg Languages (New Orleans, La., Jan

1985). ACM, New York, 52–66.

GHEZZI, C., MANDRIOLI, D., AND MORZENTI, A. 1990. TRIO, a logic language for executable

specifications of real-time systems. J. Syst. Softw. 12, 2 (May), 107– 123.

GHEZZI, C., MANDRIOLI, D., MORASCA, S., AND PEZZiI, M. 1991. A unified high-level Petri net

model for time-critical systems. IEEE Trans. Softw. Eng. 17, 2 (Feb.), 160– 172.

GOGUEN, J. A., AND MESEGUER, J. 1987. Unifjing functional, object oriented, and relational

programming with logic programming. In Research Dwectlons m ObJect-@ented Program-

mmg, B. Shriver and P. Wegner, Eds. MIT Press, Cambridge, Mass.

KAHN, K., TRIBBLE, E., MILLER, M., AND BOBROW, D. 1987. Vulcan: Logical concurrent objects.

In Research Directions m ObJect-@tented Programmmg, B. Shriver and P. Wegner, Eds, MIT

Press, Cambridge, Mass.

KEMMERER, R. A. 1985. Testing formal specifications to detect design errors. IEEE Trans.

Softw. Eng. 11, 1 (Jan.), 32-43,

KOYMANS, R. 1989. Specifying message passing and time critical systems with temporal logic.

Ph.D. dissertation, Eindhoven Univ. of Technology, The Netherlands.

KOYMANS, R., AND DE ROEVER, W. P. 1985. Examples of a Real-Time Temporal LogLc SpecifLca-

tLon. Lecture Notes in Computer Science, vol. 207, Springer-Verlag, New York, 230–251,

KROGER, F. 1987. Temporal Logic of Programs. EATCS Monographs on Theoretical Computer

Science, Springer-Verlag, New York.

MAHONY, B. P. AND HAYES, I. J. 1992. A case-study in timed refinement: A mme pump. IEEE

Trans. Softw. Eng. 18, 9 (Sept.), 817-826.

MANDRIOLI, D., MOKASCA, S., AND MORZENTI, A. 1992. Functional test case generation for

real-time systems. In Proceedings of DCCA3: 3rd International Working Conference on De-

pendable Computmg for CrLtical ApplLCatLOTLS. IFIP, 13-26.

ACM Transactions on Software Engineering and Methodology, Vol 3, No 1, January 1994

98 . A. Morzentl and P. San Pletro

MANNA, Z., AND PNUELI, A. 1983. Verification of concurrent programs: A temporal proof

system. Tech. Rep. STAN-C S-83, Dept. of Computer Science, Stanford Univ , Calif. (See also

Foundations of Computer ScZence IV. Mathematical Center Tracts, Amsterdam, June)

MEYER, B. 1988 ObJect Or,ented Software Construction. Prentice-Hall, Englewood Chffs, N.J.

MILI, A., BOUDRIGA, N., AND MILI, F. 1989 Towards Structured Speczfymg. Theory, Practzce,

Ap,phcattons. Ellis Horwood, Chichester, U.K.

MILLER, D. 1986. A theory of modules for logic programmmg. In International Symposwm on

LogLc Programrmng (Salt Lake C,ty, Utah, Sept. 1986). IEEE, New York.

MORZENTI, A. 1989. The specification of real-time systems: Proposal of a logic formahsm. Ph D

dlssertatlon, Dipartlmento dl Elettronica, Pohtecmco di Milano, Italy.

MORZENTI, A., MANDRIOLI, D., AND GHEZZI, C. 1992. A model parametric real-time logLc. ACM

Trans Program. Lang. Syst. 14, 4 (Oct.), 521-573
MORZENTI, A., RATTO, E., RONCATO, M., AND ZOCCOLANTI?, L. 1989 TRIO: A logic formalism for

the specification of real time systems. In Euromw-o Workshop on Real Tzme (Como, Italy).

IEEE, New York, 26-30.

MORZENTI, A, AND SAN PIETRO, P. 1990 TRIO+ an object oriented logic specification language.

Tech. Rep. ENEL-CRA, Dipartimento di Electtronica, Politecnico di Milano, Italy, Jan In

Itahan.

MORZENTI, A , AND SAN PIETRO, P. 1991 An object oriented logic language for modular system

specification. In Proceedings of European Conference on ObJect thentc?d Program mmg 91

(Geneva, Switzerland, July) Springer-Verlag, New York, 39-58.

O’KEEFE, R. A. 1986. Towards an algebra for constructing logic programs. In IEEE Sympo-

swm on Logic Programmmg (Boston, Mass., July 1985). IEEE, New York, 152–162

OSTROFF, J. 1989. Temporal Logic for Real-Time Systems Advanced Software Development

Series, vol. 1. Research Studies Press, Taunton, Somerset, UK.

OWICKI, S., AND LAMPORT, L. 1982. Provmg hveness properties of concurrent programs. ACM

Trans. Program. Lang. Syst. 4, 3 (July), 455-495

PAGE-JONES, M. 1992. Comparing techniques by means of encapsulation and connascence

Commun. ACM 35, 9 (Sept.), 147-152.

PETERSON, J. L. 1981. PetrL Net Theory and the Modelhng of Systems. Prentice-Hall, Engle-

wood Cliffs, N.J.

PNUELI, A. 1981. The temporal semantics of concurrent programs. Theor. Cornput S.1 13, 1
(Jan.), 45-60.

RESCHER, N , AND URQUHART, A 1971. Temporal Logic Springer-Verlag, New York

ROSEN, J P. 1992. What orientation should Ada objects take? Commun ACM 35, 11 (Nov),

71-76

RUMBAUGH, J. ET AL. 1991. Object Oriented Modeling and DesLgn. Prentice-Hall, Englewood

Chffs, N J

SHAPIRO, E 1987. Concurrent Prolog MIT Press, Cambridge, Mass.

SMULLL4N, R. M. 1968. Fu”st Order LogLc. Springer-Verlag, New York.

SNYDER, A 1986. Encapsulation and mhentance in object oriented programming languages.

In Proceedings of 00PSLA: Object @zented Programming Systems Languages and Apphca-

tzons (Portland, Ore., Sept. 1986). ACM, New York, 36-45.

STANKOWC, J. A. 1988. Misconcepts about real-time computmg: A serious problem for next-

generation computing, Computer 21, 10 (Oct.), 10-19.
U S. DEPARTMENT OF DEFENSE 1983. Reference Manual for the Ada Programming Language.

US. Department of Defense, Washington, DC.

WARD, P. T. 1986. The transformation schema: An extension of the data flow diagram to

represent control and timing. IEEE Trans. Softw. Eng. 12, 2 (Feb.), 198–2 10.

WEGNER, P. 1988. Object-oriented concept hierarchies. Tech Rep., Computer Science Dept.,

Brown Univ., Providence, R. I.

WIRTH, N. 1977. Toward a disciphne of real-time programming. Commun. ACM 20, 8 (Aug.),

557-583.

WIRTH, N. 1988. Programmmg In Modula-2. Springer-Verlag, New York

Received January 1993; revised August 1993; accepted September 1993

ACM TransactIons on Software 13ngmeermg and Methodology, Vol 3, No 1, January 1994

